双螺杆空压机的工作原理及相关知识(多图)

螺杆式空气压缩机属容积式压缩机,是通过工作容积的逐渐减少来达到气体压缩的目的。螺杆式空气压缩机的工作容积是由一对相互平行放置且相互啮合的转子的齿槽与包容这一对转子的机壳所组成。在机器运转时二转子的齿互相插入对方齿槽,且随着转子的旋转插入对方齿槽的齿向排气端移动,使被对方齿所封闭的容积逐步缩小,压力逐渐提高,直至达到所要求的压力时,此齿槽方与排气口相通,实现了排气。一个齿槽被与之相啮合的对方齿插入后,形成了二个被齿隔开的空间,靠近吸气端的齿槽为吸气容积,与排气端相近的为压缩气体的容积。随着压缩机的运转,插入齿槽的对方转子的齿向排气端移动,使吸气容积不断扩大,压缩气体的容积不断缩小,从而实现了在每个齿槽的吸气压缩过程,当压缩气体在齿槽中气体压力达到所要求的排气压力时,这齿槽正好与排气孔口相通,开始了排气过程。被对方转子的齿将齿槽分成的吸气容积和压缩容积的变化是周而复始的,就这样使压缩机能连续的吸气、压缩和排气。螺杆压缩机的工作原理和结构:1、吸气过程:螺杆式的进气侧吸气口,必须设计得使压缩室可以充分吸气,而螺杆式空压机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间z*大,此时转子的齿沟空间与进气口之自由空气相通,因在排气时齿沟之空气被全数排出,排气结束时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入,沿轴向流入主副转子的齿沟内。螺杆式空压机维修提醒当空气充满整个齿沟时,转子之进气侧端面转离了机壳之进气口,在齿沟间的空气即被封闭。2、封闭及输送过程:主副两转子在吸气结束时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内闭封不再外流,即[封闭过程]。两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动。3、压缩及喷油过程:在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内之气体逐渐被压缩,压力提高,此即[压缩过程]。而压缩同时润滑油亦因压力差的作用而喷入压缩室内与室气混合。4、排气过程:当螺杆空压机维修中转子的啮合端面转到与机壳排气相通时,(此时压缩气体之压力z*高)被压缩之气体开始排出,直至齿峰与齿沟的啮合面移至排气端面,此时两转子啮合面与机壳排气口这齿沟空间为零,即完成(排气过程),在此同时转子啮合面与机壳进气口之间的齿沟长度又达到z*长,其吸气过程又在进行。螺杆压缩机分为:开启式、半封闭式、全封闭式一、全封闭式螺杆压缩机:机体采用高质量、低孔隙率的铸铁结构,热变形小;机体采用双层壁结构,内含排气通道,强度高,降噪效果好;机体内外受力基本平衡,无开启式、半封闭承受高压的风险;外壳为钢质结构,强度高,外形美观,重量较轻。采用立式结构,压缩机占地面积小,有利于冷水机组多机头布置;下轴承浸入油槽中,轴承润滑良好;转子轴向力较半封闭、开启式减少50%(排气侧电机轴的平衡作用);无卧式电机悬臂之风险,可靠性高;避免螺杆转子、滑阀、电机转子自重对配合精度的影响,提高可靠性;装配工艺性好。无油泵螺杆立式设计,使压缩机运行或停机时不会出现缺油。下部轴承整体浸泡在油槽内,上部轴承采用压差供油;对系统压差要求较低,有紧急情况下,轴承润滑保护功能,避免轴承缺油润滑,有利于过渡季节机组的开启。缺点:采用排气冷却,电机在排气口,容易导致电机线圈烧毁;此外,出现故障时不能及时排除。二、半封闭式螺杆压缩机喷液冷却电机,电机工作温度低,寿命长;开式压缩机使用空气冷却电机,电机工作温度较高,影响电机寿命,机房工作环境差;使用排气冷却电机,则电机工作温度很高,电机寿命短。一般外置式油分体积较大,但效率很高;内置式油分与压缩机结合在一起,体积小,因此效果也相对差。二级油分分油效果可达99.999%,在各种工况下都能保证压缩机有良好的润滑。但柱塞式半封闭螺杆压缩机通过齿轮传动增速,转速高(约12000转/分),磨损大,可靠性差。三、开启式螺杆压缩机开启式机组的优点是:1)压缩机与电动机分离,使压缩机的适用范围更广;2)同一台压缩机,可以适用不同制冷剂,除了采用卤代烃制冷剂外,通过更改部分零件的材质,还可采用氨作制冷剂;3)可根据不同制冷剂和使用工况条件,配用不同容量的电动机。开启式机组主要缺点有:(1)轴封易泄漏,这也是用户经常维护的对象;(2)配用的电动机高速旋转,气流噪声大,加上压缩机本身噪声也较大,影响环境;(3)需要配置单独的油分离器、油冷却器等复杂的油系统部件,机组体积庞大,使用维护不便。

|2020-07-03T23:03:49+08:002020-07-03|空压机资讯|双螺杆空压机的工作原理及相关知识(多图)已关闭评论

螺杆空压机皮带传动和直联传动哪个好?

【中国空气压缩机】在空压机的传动系统中,一般可分为直接传动和皮带传动,长期以来,两种传动方式孰优孰劣一直是业界争论的焦点之一。螺杆式空压机的直接传动指的是马达主轴经由连轴器和齿轮箱变速来驱动转子,这实际上并不是真正意义上的直接传动。真正意义上的直接传动指的是马达与转子直接相连(同轴)且两者速度一样。这种情况显然是极少的。因此那种认为直接传动没有能量损耗的观点是不对的。另一种传动方式为皮带传动,这种传动方式允许通过不同直径的皮带轮来改变转子的转速。下面所讨论的皮带传动系统是指满足下列条件的代表z*新科技的自动化系统:●每一运转状态之皮带张力均达到优化值。●通过避免过大的启动张力,大大延长了皮带之工作寿命,同时降低了马达和转子轴承的负荷。●始终确保正确的皮带轮连接。●更换皮带相当容易和快捷,且不须对原有设定作调整。●整个皮带驱动系统安全无故障运转。值得一提的是,主张直接齿轮传动的制造商本身也有一部分产品采用皮带传动。齿轮传动与皮带传动的比较:1、失油有经验的实际使用者都知道,失油状况下z*先受害的将是齿轮箱。皮带传动系统完全不存在这种安全问题。2、根据用户要求设计工作压力通常用户要求的工作压力与制造商之标准机型的压力并不完全一致。例如用户使用要求压力为10bar,依后处理设备状况,配管长度及密封程度不同,要求空压机的工作压力可能为11或11.5bar。在这种情况下,一般会安装一台额定压力为13bar的空压机并在现场将出口压力设为所要求之工作压力。此时排气量会基本上保持不变,因为z*终工作压力虽然降低了但转子的速度并未增加。代表现代技术的皮带传动设计制造商只需简单地改变皮带轮的直径并可将工作压力设计得与用户要求完全一致,这样用户用同功率的马达却可获得更多的风量。对于齿轮传动,则没有这么方便。3、已安装空压机之压力改变有时由于用户生产工艺条件的改变,原来购买的空压机之设计压力可能太高或太低,希望能改变,但对于齿轮传动的空压机而言,这项工作会显得非常困难和昂贵,而对于皮带传动式空压机而言却是轻而易举的事,只须更换皮带轮即可。4、安装新轴承当转子轴承需要更换时,对于齿轮传动的空压机,齿轮箱和齿轮箱主轴轴承需同时大修,其费用让用户难以接受。对于皮带传动空压机,根本不存在这种问题。5、更换轴封任何螺杆式空压机均使用了一种环形轴封,到一定寿命均需更换。对于齿轮传动式空压机,必须先分离马达、连轴器,才能接近轴封,使得这一工作耗时费力,从而增加维护费用。对于皮带传动式空压机,只需先卸下皮带轮即可,容易得多。6、马达或转子轴承损坏对于齿轮传动空压机,当马达或转子轴承损坏时,往往会殃及相连重要部件造成直接和间接双重损坏。对于皮带传动空压机不存在这种状况。7、结构噪音对于齿轮传动空压机,由于马达与转子刚性连接,压缩室转子的振动会传递到齿轮箱和马达轴承,这不仅增加了马达轴承的磨损,同时增加机器噪音。8、效率优良的齿轮传动效率可达98%-99%,优良的皮带传动设计在正常的工作条件下亦可达到99%的效率(参见HeinzPeeken教授发表于1991年12月《传动技术》上的研究报告)。两者的差异并不取决于传动方式的选择,而取决于制造商的设计与制造水平。9、空载能耗对于齿轮直接传动方式,空载压力一般要维持在2.5bar以上,有的甚至高达4bar,以确保齿轮箱的润滑。对于皮带传动方式,理论上讲空载压力可以为零,因为转子吸进的油足以润滑转子和轴承。一般为安全起见,压力维持在0.5bar左右。以一台160kw的齿轮传动空压机为例,每年工作8000小时,其中15%(即1200小时)的时间为空载,这台机器每年将比皮带传动的同功率空压机多消耗28800kwh的电费(假定两台机器的空载压差为2bar,约15%的能耗差异),长期来讲,这将是不小的花费。

|2020-06-07T18:30:58+08:002020-06-07|空压机资讯|螺杆空压机皮带传动和直联传动哪个好?已关闭评论

双螺杆与单螺杆的对比

经常有顾客在购买螺杆机之前会碰到一个问题,有人说单螺杆好,噪音低,有人说双螺杆好,气源稳定,那到底哪种更加可靠呢? 双螺杆和单螺杆压缩机比较表 双螺杆 单螺杆 型线设计 已经过4代的发展,已经非常完善和成熟 有待进一步优化 受力状况 气体力有不平衡,但轴向力可通过结构设计改善其平衡性,没有不平衡惯性力,受力平衡性优良。 受力平衡性极好 [...]

|2020-05-19T18:44:39+08:002020-05-19|空压机资讯|双螺杆与单螺杆的对比已关闭评论

蹊跷的螺杆空压机抱死事件

  不论是双螺杆还是单螺杆压缩机,所谓的“抱机事故”都是严重的事故。在大多数制造厂中,若发生“抱机事故”,其转子和机体一般是要报废的,制造厂不敢将抱合的转子和机体修理后充新品出售,仅部分经修复的转子和机体有可能用于返修压缩机。  双螺杆压缩机的抱机事件  正常的双螺杆压缩机的抱机原因多是润滑油严重老化而产生结焦,导致轴承失效,而产生“抱机”,且“抱机”引起的“熔焊”多发生在排气端。  非正常的双螺杆压缩机的抱机事件起因并非一定是润滑油老化所致,也有其它原因引起轴承故障,所以,轴承故障是大多数双螺杆压缩机抱机事件的首要因素。  很多原因可导致某个轴承过快磨损。由于轴承过快磨损,使轴承滚道和滚珠发生粘结磨损,进而产生剧烈磨损甚至保持架断裂,滚珠散落。使螺杆转子失去正常的约束,导致转子偏磨,严重情况是振动加大,甚至转子变形加大,导致转子弯曲,发生抱机事故。  在这种情况发生时,压缩机转子两端轴承几乎全部受伤,使轴径跳动加大,并使轴密封失效。  进一步就会发生转子与机体产生熔焊磨损,最终导致停机。  单螺杆压缩机的抱机事件  单螺杆压缩机的抱机就确实有些蹊跷,“抱机”基本发生在吸气侧。相比之下,单螺杆压缩机的“抱机”事件原因就复杂一些。几乎单螺杆压缩机的绝大多数厂家没有不被“抱机事件”所困扰的,单螺杆压缩机制造商也在此方面没少花精力,但对其“抱机”机理却很少研究透彻。  据作者了解,国内的单螺杆压缩机厂家中仅有一家在此方面有办法,他们的单螺杆压缩机很少发生“抱机”事件。作者看过他们特殊处理的转子,虽然并不是做的很好,但是也基本杜绝了“抱机”事件,相比其他厂家来说,是显得高明一些。  有些螺杆空压机制造商畏惧类似“抱机事故”,在未搞清原因的情况下,对出现过“抱机现象”的大规格产品采取修改转子与机体的间隙值,放大转子与机体间隙,这也能解决一部分“抱机”事件,但其做法却致使压缩机的能效降低,比自己较小规格的压缩机产品能效还低一些,显得不大正常,也算是“没办法的办法”。  在压缩机制造厂出现“抱机”事件,在厂内自己进行处理的话,损失相对来说会小一点。如果“抱机”事件在用户处发生,就比较麻烦。  其实,解决“抱机”事件并不难,关键是有些制造厂家没有真正找到“抱机”发生的原因和机理。  认真研究“抱机”的原因,加大技术措施,能有助于彻底解决“抱机事件”。  螺杆压缩机的间隙  对螺杆压缩机的侧隙和轴端间隙,国内不同的压缩机人,不同的压缩机制造商基本也有一个粗略的共识,大家都差不多采用相似的间隙,在正常生产制造中,也都习以为常。  其实,该间隙影响到各自的压缩机寿命、性能、性能保持率和安全性等。作者在螺杆压缩机的间隙方面,有着不同的见解。  a.螺杆压缩机的间隙到底多大合适  作者在大修进口螺杆压缩机时,碰到一个如何恢复性能的问题。  在大修前,作者先给待大修的进口压缩机作了性能测试。大修进行中,要对大修后的压缩机性能进行测试,看看能不能提高性能数据或恢复原始性能数据。在测试中,感觉恢复到原始性能数据都很难,更别说提高性能数据了。  作者和工友们经过几轮调整压缩机间隙的试验,终于真正恢复了原始性能数据。除更换进口的轴承和认真清理压缩机外,几乎没有对转子和机体做过修理,所以,性能数据得不到恢复,作者认为问题是出在了压缩机间隙上。  开始,作者并没有对间隙特别关注,按常规调整间隙,第一轮测试下来,性能数据与原始数据差了10%还多。作者在没有办法的情况下,就试着调小轴端间隙,先把转子与排气端盖间隙调到0.03mm后进行测试性能,发现性能几乎没有什么变化。  下一轮,作者把间隙调到0.02mm后,经测试,压缩机性能上升了5%左右。  作者又把间隙调到0.01mm后,压缩机性能又上升3%左右。  当作者把此间隙调到0.005时,压缩机性能回复到100%。  可能有些人对此数据和做法持怀疑态度,这不难理解,毕竟这种做法还是比较罕见的。作者担心调小此间隙后,会发生转子与端盖咬合,开始也是心有余悸,但是出于无奈,只好硬着头皮做下去,但结果并非人们想象的那样糟,而是顺利过关。  所以,转子与排气端盖的间隙到底多大合适的问题,还是有待商榷。  b.转子与排气端盖的间隙探讨  作者的这种做法,开始确实是出于无奈。后来,作者沿袭这种做法,也没有出现什么问题,倒是过去的经典做法值得商榷。  作者认为,调节此间隙时,可以调到间隙很小,即使是零偏差也没有关系。关键是调整的手法应适度。不能出现过盈现象,即出现用手动盘车都很困难,或根本盘不动车的情况。  确实,排气端轴承有一定的韧性,人工检测此处为零间隙时,还可手工盘车,虽然感觉到粘滞。  当螺杆压缩机启动时,此间隙会自动脱开,使间隙朝稍大方向变化,在正常情况下,是安全的。  c.螺杆压缩机合适的间隙是受到制造因素影响的,也受到使用维护因素以及使用工况因素影响  设计制造精良的螺杆压缩机只需要很小的间隙,其性能必然好,性能保持率也高。  而相反的是:制造安装质量一般或较差的压缩机就不得不放大间隙,使压缩机性能下降,并且性能保持率差。  当然,螺杆压缩机的使用维护受几个方面因素影响:  其一是:制造商或销售商的技术水平高低和技术的合理性决定着该压缩机使用过程的表观质量。另外,好的而且性价比高的备品备件,可保证小间隙压缩机的可靠性。  其二是:工况因素包括环境清洁程度,吸气和冷却介质温度,负荷稳定性,启动频繁程度和软启动的应用与否等,好的工况因素可以保证小间隙压缩机的可靠性。  其三是:业主执行制造商建议的合理程度,制造商或经销商对压缩机安装、维护保养应用的规定和建议的合理程度,有时决定着压缩机的影响可靠性。事实是:有些规定和建议并非最佳建议,有的还留有“后门”,其目的是增大供应商和服务商的后期盈利。如果压缩机业主明白这些事情,就可能以最佳的维持成本获得最大的性能和可靠性受益。  d.小间隙压缩机需要配置真正高质量的轴承及精巧安装。  e.小间隙压缩机转子和端盖处需要精确抛光和清洁安装,严防有垃圾进入。且安装前,必须真正消磁。  f.安装压缩机时,在此涂干净的润滑油是常规做法,更佳的选择是涂高抗磨性压缩机润滑油或磨合剂。安装前的预处理程度对于后续的状况影响非常之大。  g.随着压缩机运行磨合,此间隙会自适应趋于合理化,并较长久保持这种状况。  现实情况是  实际螺杆压缩机的间隙偏大与能效偏低(气量偏小,功耗偏大)。有些在用的螺杆压缩机随着使用状况的变化,间隙已很大,能效已经很低。不少的螺杆压缩机排气端间隙大于0.5mm甚至大于1mm。不仅气量小,功耗大,能效差,而且振动大,温度高。  螺杆压缩机在这种情况下持续工作,必然是气量小,功耗大,振动及温度高,经济效益可想而知。  值得思考的是  # 全国在用的螺杆压缩机仅此一项造成的能效损失到底有多大?  # 有的压缩机修理商根本不具备螺杆压缩机修理技术,其经验、设备、工具甚至场地都无法保证螺杆压缩机的合理间隙和能效,不具备修理后的性能验证手段。  # 业主或使用者怎样选择服务和修理会更好一些,是值得推敲的。

|2019-11-20T09:00:21+08:002019-11-20|空压机资讯|蹊跷的螺杆空压机抱死事件已关闭评论

离心式压缩机原理及相关知识

离心式压缩机中气压的提高,是靠叶轮旋转、扩压器扩压而实现的。根据排气压力的高低,可将其分为三类:离心通风机,风压在10-15kPa范围或小于此值;离心鼓风机,风压在15~350kPa范围;离心压缩机,风压在350kPa以上。叶轮对气体作功使气体的压力和速度升高,完成气体的运输,气体沿径向流过叶轮的压缩机。离心压缩机又称透平式压缩机:主要用来压缩气体,主要由转子和定子两部分组成:转子包括叶轮和轴,叶轮上有叶片、平衡盘和一部分轴封;定子的主体是气缸,还有扩压器、弯道、回流器、迸气管、排气管等装置。离心式压缩机的工作原理是:当叶轮高速旋转时,气体随着旋转,在离心力作用下,气体被甩到后面的扩压器中去,而在叶轮处形成真空地带,这时外界的新鲜气体进入叶轮。叶轮不断旋转,气体不断地吸入并甩出,从而保持了气体的连续流动。与往复式压缩机比较,离心式压缩机具有下述优点:结构紧凑,尺寸小,重量轻;排气连续、均匀,不需要中间罐等装置;振动小,易损件少,不需要庞大而笨重的基础件;除轴承外,机器内部不需润滑,省油,且不污染被压缩的气体;转速高;维修量小,调节方便。与往复式压缩机不同,离心式压缩机中气压的提高,是靠叶轮旋转、扩压器扩压而实现的。根据排气压力的高低,可将其分为三类:离心通风机,风压在10-15kPa范围或小于此值;离心鼓风机,风压在15~350kPa范围;离心压缩机,风压在350kPa以上。离心压缩机主要由转子和定子两大部分组成。转子包括叶轮和轴。叶轮上有叶片,此外还有平衡盘和轴封的一部分。定子的主体是机壳(气缸),定子上还安排有扩压器、弯道、回流器、迸气管、排气管及部分轴封等。离心压缩机的工作原理为,当叶轮高速旋转时,气体随着旋转,在离心力作用下,气体被甩到后面的扩压器中去,而在叶轮处形成真空地带,这时外界的新鲜气体进入叶轮。叶轮不断旋转,气体不断地吸入并甩出,从而保持了气体的连续流动。与往复式压缩机比较,离心式压缩机具有下述优点:1、结构紧凑,尺寸小,重量轻;2、排气连续、均匀,不需要级间中间罐等装置;3、振动小,易损件少,不需要庞大而笨重的基础;4、除轴承外,机件内部不需润滑,省油,且不污染被压缩的气体;5、转速高;6、维修量小,调节方便。离心式压缩机通过高速旋转的叶轮,把原动机的能量传送给气体,使气体压力和速度提高,气体在压缩机内固定元件中将速度能转换为压力能。主要用来压缩和输送气体。一、定子定子是压缩机的关键部位,由气缸、隔板、气封和轴承组成。气缸是压缩机的壳体,由壳身和进排气室构成,内装有隔板、密封体、轴承等零部件。要求气缸有足够的强度以承受气体的压力,法兰结合面应严密,保持气体不向机外泄漏,有足够的刚度,以免变形。隔板形成固定元件的气体通道,根据隔板所处的位置,分为进气隔板、中间隔板、段间隔板和排气隔板等。气封装在隔板或轴瑞气缸上,防止气体在缸内的泄漏或向外泄漏。轴承则安装在缸体的两端,起支承的作用。二、转子转子是压缩机的做功部件,通过旋转对气体作功,使气体获得压力能和速度能。转子主要由主轴、叶轮、平衡盘、推力盘和定距套等元件组成。转子在装配前,所有叶轮应做超速试验。转子要有足够的强度和刚度。叶轮和转子上的所有零部件都必须紧密装在轴上,在运行过程中不允许有松动,以免运行时产生位移,造成摩擦、撞击等故障。离心式压缩机的工作原理是气体进入离心式压缩机的叶轮后,在叶轮叶片的作用下,一边跟着叶轮作高速旋转,一边在旋转离心力的作用下向叶轮出口流动,并受到叶轮的扩压作用,其压力能和动能均得到提高,气体进入扩压器后,动能又进一步转化为压力能,气体再通过弯道、回流器流入下一级叶轮进一步压缩,从而使气体压力达到工艺所需的要求。

|2019-01-08T23:20:02+08:002019-01-08|空压机资讯|离心式压缩机原理及相关知识已关闭评论

螺杆式空压机的工作原理图

1、吸气过程:螺杆式的进气侧吸气口,必须设计得使压缩室可以充分吸气,而螺杆式压缩机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间z*大,此时转子的齿沟空间与进气口之自由空气相通,因在排气时齿沟之空气被全数排出,排气结束时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入,沿轴向流入主副转子的齿沟内。当空气充满整个齿沟时,转子之进气侧端面转离了机壳之进气口,在齿沟间的空气即被封闭。2、封闭及输送过程:主副两转子在吸气结束时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内闭封不再外流,即[封闭过程]。两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动。3、压缩及喷油过程:在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内之气体逐渐被压缩,压力提高,此即[压缩过程]。而压缩同时润滑油亦因压力差的作用而喷入压缩室内与室气混合。4、排气过程:当转子的啮合端面转到与机壳排气相通时,(此时压缩气体之压力z*高)被压缩之气体开始排出,直至齿峰与齿沟的啮合面移至排气端面,此时两转子啮合面与机壳排气口这齿沟空间为零,即完成(排气过程),在此同时转子啮合面与机壳进气口之间的齿沟长度又达到z*长,其吸气过程又在进行。

|2019-01-08T23:22:11+08:002019-01-08|空压机资讯|螺杆式空压机的工作原理图已关闭评论
返回顶部